TABLE OF CONTENTS

SMARTLAB USB 8 CHANNELS RELAY OUTPUT 8 CHANNELS PHOTO ISOLATOR INPUT

OPERATION MANUAL

CHAPTERS

1.	Introduction	- 1
2.	Hardware Configuration	5
3.	Diagnostic under Windows/XP	1
4.	Software Programming under Windows/XP and	
Liı	nux	1
	APPENDICES	
A.	Warranty Information	14
	Data Sheet	

CHAPTER 1

INTRODUCTION

The USB 8 channels relay output / photo isolator input card provides photo couple digital input and relay output channels. The photo isolator input part provides 8 photo couple digital input channels, which allow the input signals to be completely floated and prevent the ground loop. The relay output part provides 8 relays to drive 8 different output channels. Each relay channel can be used to control ON/OFF of external devices, to drive external power relays, to activate alarms... etc.

The USB 8 channels relay output / photo isolator input card also provide 16 digital input/output channels, which allows connect to external devices for applications of digital I/O.

The USB 8 channels relay output / photo isolator input card provides Plug and Play (PnP) features, it is a programmable I/O interface card for PC/486, Pentium, or compatibles. The on board high speed 8051 uC provides USB functions run at 12Mbps full speed or 1.5Mbps low speed.

The features of USB 8 channels relay output / photo isolator input card are:

- USB2.0 with Plug and Play (PnP) features.
- High speed 8051 uC core.
- Support USB ID selection to identify USB device.
- By using PC817 photo couple chips.
- Power supplied from external DC +5V.
- Support 8 photo couple input channels and 8 relay output channels.

• Allow the photo input signals to be completely floated and prevent the ground loops.

- 16 LED correspond to 16 input/output ports activation status.
- For photo couple input channel, the isolation voltage is 5000V, maximum load voltage is 30V, maximum input current is 50mA forward.
- Activation voltage of photo input:

When short jumpers (input range from 0 to 20V DC)

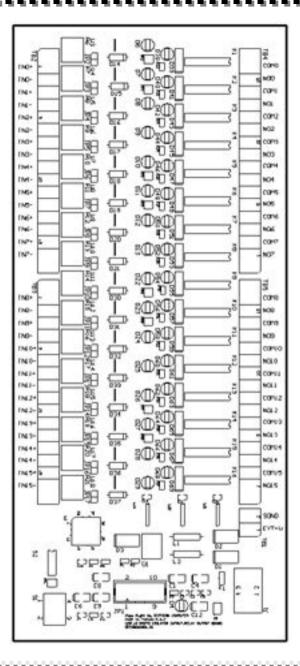
0 to 2.3V inactive

3 to 20V active

When open jumpers (input range from 0 to 30V DC)

0 to 16.9V inactive

17.6 to 30V active


- For relay output channel, maximum contact rating is 120V/AC, 120V/DC 1AMP, minimum response time is 1ms, maximum contact resistance is 0.1 OHM.
- Support 16 digital input/output channels.
- Each digital I/O provides voltage range from 0V to 3.5V, where 0 to 0.4V is OFF and 2.8V to 3.4V is ON.
- Suitable for Linux, MS/WINDOWS, ... etc.
- Operating temperature range from 0 to 33C.
- Relative humidity rage from 0 to 90%.
- Dimension 250mm*120mm*55mm.
- Weight 470Gram.

*** PACKAGE CONTENTS:**

- SMARTLAB USB 8 channels relay output / 8 channels photo couple input card.
- USB cable.
- User's manual.

- Decision Studio CD for USB Serial Product.
- Warranty form.

Computer International DECISION

HARDWARE CONFIGURATION

Before you use the USB 8 channels relay output / 8 channels photo couple input card, please ensure that the jumpers and switches setting. The proper jumper and switches settings for the 8 channels relay output / 8 channels photo couple input adapter are described in the following.

2.1 Switch Settings

1. S1 Reset

The S1 switch is used to reset 8051, the signal assignments are shown in the following.

Pin	Signals
3,4	Reset SW+
1,2	Reset SW-

2. S2 USB ID

The S2 switch is used to identify USB card ID. Please set different card ID to each card (do not duplicate card ID setting).

1	2	3	4	Card ID
ON	ON	ON	ON	
OFF	ON	ON	ON	14
ON	OFF	ON	ON	13
OFF	OFF	ON	ON	12
ON	ON	OFF	ON	11
OFF	ON	OFF	ON	10
ON	OFF	OFF	ON	9
OFF	OFF	OFF	ON	8
ON	ON	ON	OFF	7
OFF	ON	ON	OFF	6
ON	OFF	ON	OFF	5
OFF	OFF	ON	OFF	4
ON	ON	OFF	OFF	3
OFF	ON	OFF	OFF	2
ON	OFF	OFF	OFF	1
OFF	OFF	OFF	OFF	0

3. Down load revised firmware

When the S2 switch is set to ON ON ON ON status, means down load revised firmware. please follow the steps shown in the following:

- 1. Set S2 to ON ON ON ON.
- 2. Run USBBootloader program to down load revised firmware.

2.2 Jumper Settings

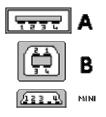
1. External Power Input (TB1)

The power of USB 8 channels relay output / photo isolator input card can be supplied from USB, however, if USB can not supply enough power, the external power is need. TB1 is used to input external DC +5V power. Be careful to input DC +5V power.

2. Input Voltage Range Selection (JP2 to JP9)

JP2 to JP9 are used to select input voltage range. The JP2 is used to select photo couple input channel 0, and JP3 is used to select photo couple input channel 1 ... etc. When short the jumper, the input voltage range from 0 to 20V, and the active voltage form 3 to 20V. When open the jumper, the input voltage range from 0 to 30V, and the active voltage from 17.6 to 30V.

Jumper	Input Voltage	Inactive Voltage	Active Voltage
open	0 to 30V	0 to 16.9V	17.6 to 30V
short	0 to 20V	0 to 2.3V	3 to 20V


3. Input/Output Selection (JP10 to JP11)

JP10 and JP11 are used to select input/output of digital I/O. When short JP10 means select input mode for D0 to D7, otherwise open JP10 means select output mode for D0 to D7. When short JP11 means select input mode for D8 to D15, otherwise open JP11 means select output mode for D8 to D15.

2.3 USB Connector

1. USB Connector

The USB connector is connected to computer USB port by using USB cable.

2.4 Connector Assignments

1. TB1 Signal Assignments

The signal assignments of digital input/output are shown in the following. The digital I/O voltage range from 0V to 3.5V, where 0 to 0.4V is OFF and 2.8V to 3.4V is ON. Please select input or output mode from JP10 and JP11.

DI			
Pin	Signal	Description	
1	DIO15	Digital I/O Channel 15	
2	DIO14	Digital I/O Channel 14	
3	DIO13	Digital I/O Channel 13	
4	DIO12	Digital I/O Channel 12	
5	DIO11	Digital I/O Channel 11	
6	DIO10	Digital I/O Channel 10	
7	DIO09	Digital I/O Channel 09	
8	DIO08	Digital I/O Channel 08	
9	DIO07	Digital I/O Channel 07	
10	DIO06	Digital I/O Channel 06	
11	DIO05	Digital I/O Channel 05	
12	DIO04	Digital I/O Channel 04	
13	DIO03	Digital I/O Channel 03	
14	DIO02	Digital I/O Channel 02	
15	DIO01	Digital I/O Channel 01	
16	DIO00	Digital I/O Channel 00	

2. TB2 Input Signal Assignments

The photo isolator input signal is assigned in the TB2 connector, its pin assignments are show in the below. TB2

Pin	Signal	Description
1	IN-07-	Opto-isolator Ch. 07 - Input
2	IN-07+	Opto-isolator Ch. 07 + Input
3	IN-06-	Opto-isolator Ch. 06 - Input
4	IN-06+	Opto-isolator Ch. 06 + Input
5	IN-05-	Opto-isolator Ch. 05 - Input
6	IN-05+	Opto-isolator Ch. 05 + Input
7	IN-04-	Opto-isolator Ch. 04 - Input
8	IN-04+	Opto-isolator Ch. 04 + Input
9	IN-03-	Opto-isolator Ch. 03 - Input

10	IN-03+	Opto-isolator Ch. 03 + Input
11	IN-02-	Opto-isolator Ch. 02 - Input
12	IN-02+	Opto-isolator Ch. 02 + Input
13	IN-01-	Opto-isolator Ch. 01 - Input
14	IN-01+	Opto-isolator Ch. 01 + Input
15	IN-00-	Opto-isolator Ch. 00 - Input
16	IN-00+	Opto-isolator Ch. 00 + Input

3. TB3 and TB4 Output Signal Assignments

Operations Manual

The relay output signal is assigned in TB3 and TB4 connector, its pin assignments are show in the below.

Where (NO-00, COM-00, NC-00) is OUT00, (NO-01, COM-01, NC-01) is OUT01, ... etc.

TB3

Pin	Signal	Description
1	EXT+V	External +5V 3A Power
2	SGND	Signal Ground
3	COM-00	Relay Ch. 00 - Output
4	NO-00	Relay Ch. 00 - Output
5	NC-00	Relay Ch. 00 - Output
6	COM-01	Relay Ch. 01 - Output
7	NO-01	Relay Ch. 01 - Output
8	NC-01	Relay Ch. 01 - Output
9	COM-02	Relay Ch. 02 - Output
10	NO-02	Relay Ch. 02 – Output

TB4

Pin	Signal	Description
1	NC-02	Relay Ch. 02 - Output
2	COM-03	Relay Ch. 03 - Output
3	NO-03	Relay Ch. 03 - Output

NC-03 Relay Ch. 03 - Output

3	COMI-04	Relay Cn. 04 - Output
6	NO-04	Relay Ch. 04 - Output
7	NC-04	Relay Ch. 04 - Output

1	NC-04	Relay Ch. 04 - Output
8	COM-05	Relay Ch. 05 – Output
9	NO-05	Relay Ch. 05 - Output

10

14 15 16

COM-07	Relay Ch. 07 - Output
NO-07	Relay Ch. 07 - Output
NC-07	Relay Ch. 07 - Output

CHAPTER 3

DIAGNOSTIC UNDER WINDOWS/XP

The USB Test Program.exe is a diagnostic program to test your 16 channels relay output and 16 channels photo couple input under Windows/XP.

User can get USB Test Program.exe from Decision Studio CD.

CHAPTER 4

SOFTWARE PROGRAMMING UNDER WINDOWS/XP AND LINUX

To input data from photo couple channel or output data to relay output channel, please use Hid API functions. User can get Hid API functions from Decision Studio package.

APPENDIX A

WARRANTY INFORMATION

A.1 Copyright

Copyright DECISION COMPUTER INTERNATIONAL CO., LTD. All rights reserved. No part of SmartLab software and manual may be produced, transmitted, transcribed, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of DECISION COMPUTER INTERNATIONAL CO., LTD.

Each piece of SmartLab package permits user to use SmartLab only on a single computer, a registered user may use he program on a different computer, but may not use the program on more than one computer at the same time.

Corporate licensing agreements allow duplication and distribution of specific number of copies within the licensed institution. Duplication of multiple copies is not allowed except through execution of a licensing agreement. Welcome call for details.

A.2 Warranty Information

SmartLab warrants that for a period of one year from the date of purchase (unless otherwise specified in the warranty card) that the goods supplied will perform according to the specifications defined in the user manual. Furthermore that the SmartLab product will be supplied free from defects in materials and workmanship and be fully functional under normal usage.

In the event of the failure of a SmartLab product within the specified warranty period, SmartLab will, at its option, replace or repair the item at no additional charge. This limited warranty does not cover damage resulting from incorrect use, electrical interference, accident, or modification of the product.

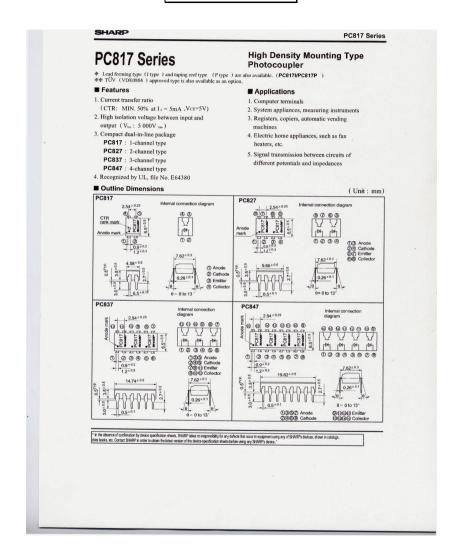
All goods returned for warranty repair must have the serial number intact. Goods without serial numbers attached will not be covered by the warranty.

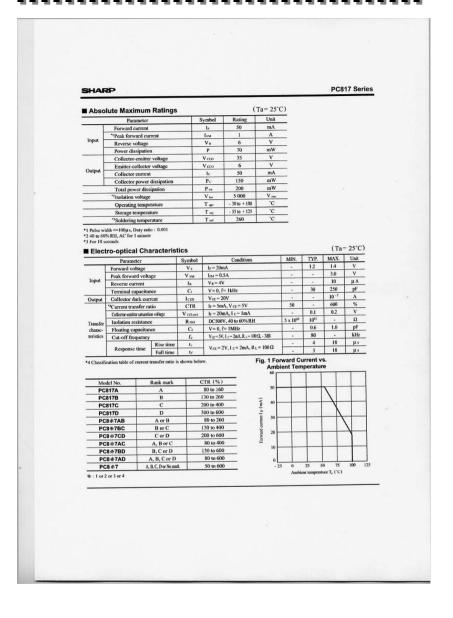
The purchaser must pay transportation costs for goods returned. Repaired goods will be dispatched at the expense of SmartLab.

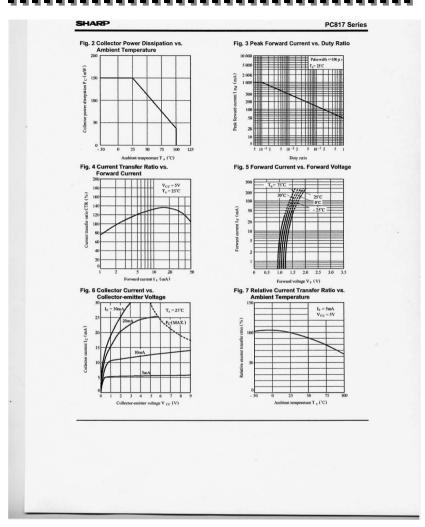
To ensure that your SmartLab product is covered by the warranty provisions, it is necessary that you return the Warranty card.

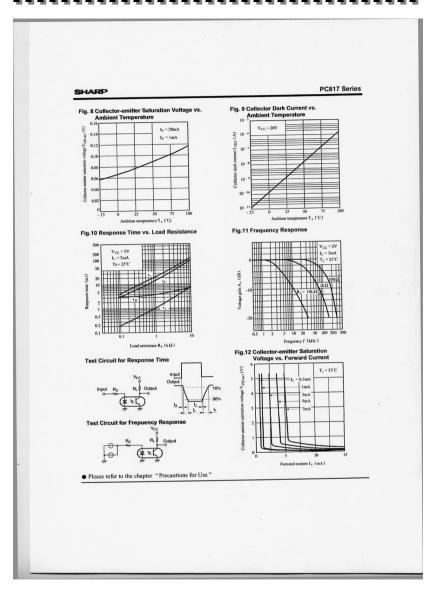
Under this Limited Warranty, SmartLab's obligations will be limited to repair or replacement only, of goods found to be defective a specified above during the warranty period. SmartLab is not liable to the purchaser for any damages or losses of any kind, through the use of, or inability to use, the SmartLab product.

SmartLab reserves the right to determine what constitutes warranty repair or replacement.


Return Authorization: It is necessary that any returned goods are clearly marked with an RA number that has been issued by


Operations Manual USB Photo Relay Card


SmartLab. Goods returned without this authorization will not be attended to.


APPENDIX B

DATA SHEET

Application Circuits

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following
- conditions:

 (i) The devices in this publication are designed for use in general electronic equipment designs such as: - Personal computers
- Office automation equipment
- Telecommunication equipment [terminal]
- Test and measurement equipment
- Industrial control
- Audio visual equipment
 Consumer electronics
- (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers - Alarm equipment
- Various safety devices, etc.
- (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
- Space applications
 Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
 Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under In prontation is sue proprietaly produce or struct and is Copyrigated, want an ingus reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication
- may be made by a third party.

 Contact and consult with a SHARP representative if there are any questions about the contents of this

SHARP-